Edit Manage Stats

‘ c-arnab

Posted on 16 Jan
Serverless in Azure using Static Web Apps,
Functions and Cosmos DB

#azure #azurefunctions #staticwebapps #cosmosdb

In this post, we look at Serverless development on Azure. First we look at the tools
and packages necessary to develop locally. Then we create a static site using Azure
Static Web Apps (SWA). Then we look at the built in authentication support provided
by SWA as we create the authentication layer to ensure users can access their data
securely. Then we look at how SWA supports building APIs using built in support for
HTTP-triggered functions as we create and Integrate APIs to the static web site using
.Net6 and C#. Then we create the data layer in Cosmos DB and integrate the same to
functions built earlier. Finally we look at the Cl/CD support provided where 'Github
repository changes' trigger builds and deploy the solution to Azure.

Problem Statement

The people at helm at the insistence of HR Department have decided to have a Calendar
system. Though the solution is supposed to have loads of features, the decision is to build
the whole iteratively and a basic Proof Of Concept (POC) is to be developed first. A person
at helm attended a conference where s/he heard about "serverless" which allows on-
demand scaling and also brings down TCO of a solution with “pay-as-you-go” usage and
so one of the requirements for the POC is to make the entire solution using serverless
technologies.

Solution

Compute options in serverless services are varied in Azure. One could choose Serverless
Containerized Microservices using Azure Container Apps OR Serverless Kubernetes using
AKS Virtual Nodes OR Serverless functions using Azure Functions OR the newest entrant-
Azure Static Web Apps.

Azure Static Web Apps supports static content hosting, APls powered by Azure Functions,
local development experience, CI/CD workflows, global availability, dynamic scale, preview



environments and all this without the necessity to manage servers, creating & assigning
SSL certificates, establishing reverse proxies, etc.

There are two options in Databases amongst serverless services in Azure. The relational
Azure SQL Database serverless and the non relational Azure Cosmos DB.

Azure Cosmos DB is a fully managed NoSQL database which offers features such as
Change Data Capture and multiple database APIls - NoSQL, MongoDB, Cassandra, Gremlin,
& Table enabling one to model real world data using documents, column-family, graph,
and key-value data models.

For the POC, the calendar system will enable users to authenticate themselves and view
their events as well as add events to the calendar.
Static Web Apps with Cosmos DB will be used to implement these use cases. Visual Studio

code will be used as IDE.

Architecture Diagram with Application Development Lifecycle

Ah-"llrrf_mﬁi AZure

GitHuh\
Ay
thep, _m Static Web Apps

L SYL_E= o
8086 | x
fee - index.html
n O Static Content < ﬂ
e 1L lﬁﬂ' i
—mal 5 Azure p D
Code Push/PR Repository Actions :;imns /api/events
] ﬂ E

- - -

4

Cosmos DB

Prerequisites for local development

1. .net 6 sdk - https://dotnet.microsoft.com/en-us/download/dotnet/6.0

2. Azure Functions Core Tools v4.x - https://go.microsoft.com/fwlink/?linkid=2174087

3. Static Web Apps CLI - https://azure.github.io/static-web-apps-cli/

4. Azure Cosmos DB Emulator - https://aka.ms/cosmosdb-emulator




. Install Azure Functions Extension from Visual Studio Code Extensions Tab -
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-
azurefunctions

. Install Azure Static Web Apps Extension from Visual Studio Code Extensions Tab -
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-
azurestaticwebapps

“ INSTALLED 26

? Azure Account L) 10781ms
A common Sign In and Subscription management extension for VS Code.

¥ Microsoft

Azure CLI Tools

F=iyir=1

2 Microsoft

Azure Developer CLI

AKES L €dS5Y 1O TUn, provisi

L Microsoft

Azure Functions

L . H

¥% Microsoft

Azure Resources

.
N extension Tor

¥} Microsoft

Azure Static Web Apps &) 3647ms

i B - LA
I|." 51 3 |1 iLf 2 .--'a:'_.'- |

TAL S | B L N ks ¥k o
I

% Microsoft $o}
C#
_# tor Visual Studio Code |
# Microsoft
Ensure you have .Net6 sdk (check by running command dotnet --1ist-sdks ), even if you have other

.Net sdks even a higher one such as .Net7. This is because Azure Functions have concept of In-
process and Isolated worker process. This article will have steps supporting In-process whereas

.Net7 is only supported in Isolated worker process.

Build Static Site

To get started a template in Github can be used. Go to https://github.com/login?

return_to=/staticwebdev/vanilla-basic/generate and in the page add mycalendar in the
Repository field and click on button Create Repository from Template to create repository.




Create a new repn:-mtc:ry from vanilla- basu:

The new repository will start with the same files and folders as staticwebdev/vanilla-basic
Owner * Repository name *
) ccammab~ |/ mycalendar v

Great repository names are short and memorable. Need inspiration? How about solid-octo-system?

Description (optional)

Y | F'ul::irc
. Anyvone on the internet can see -i-l T Tepositons. You L whio can commit
E] F'rwate
tho can see and commit to this repositon

Include all branches

@ You are creating a public repository in your personal account

Plain vanilla javascript template is used here. There are more templates including angular, react, vue,
blazor available at https://github.com/staticwebdev

Open visual studio code and open a new terminal with bash.
Go to folder where you wish to do your development and run the following command to
clone the github project to your local machine.

git clone https://github.com/<your_github_account>/mycalendar.git

In VSCode select File > Open Folder to open the cloned mycalendar repository

Delete files package.json, package-lock json, playwright.config.ts, entire tests folder, entire
.devcontainer folder and both files (playwright-onDemand.yml and playwright-
scheduled.yml) in .github/workflows folder (but do not delete this folder)

Update Github Repository

At the command prompt in terminal, run the following command to update changes in
workspace to staging area.



git add --all

Check the changes to be committed.

git status

Commit changes from staging to the local repository.

git commit -m "Initial commit to create base repository"

Push code to Github

git push -u origin main




D: \cosmosdb\mycalendar>git add --all

D: \cosmosdb\mycalendar>git status
On branch main
Your branch is up to date with 'origin/main’.

Changes to be committed:
(use "git restore --staged <file>..." to unstage)

D: \cosmosdb\mycalendar>git commit -m "Initial commit to create base repository”
[main di163326] Initial commit to create base repository

18 files changed, 590 deletions(-)

delete mode 100644 .devcontainer/Dockerfile

delete mode 180644 .devcontainer/devcontainer.json

delete mode 100644 .devcontainer/library-scripts/node-debian.sh
delete mode 180644 .github/workflows/playwright-onDemand.yml
delete mode 100644 .github/workflows/playwright-scheduled.yml
delete mode 180644 package-lock.json

delete mode 100644 package.json

delete mode 100644 playwright.config.ts

delete mode 100644 tests/Test.README.md

delete mode 100644 tests/playwright.spec.ts

D: \cosmosdb\mycalendar>git push -u origin main
Logon failed, use ctrl+c to cancel basic credential prompt.
Enumerating objects: 3, done.
Counting objects: 1@@% (3/3), done.
Delta compression using up to 8 threads
Compressing objects: 10@k (2/2), done.
Writing objects: 1ee¥% (2/2), 238 bytes | 238.e@ KiB/s, done.
Total 2 (delta 1), reused @ (delta ©), pack-reused @
remote: Resolving deltas: 108% (1/1), completed with 1 local object.
To https://github.com/c-arnab/mycalendar.git
e379fb9. .d163326 main -> main
Branch 'main' set up to track remote branch 'main’' from 'origin’.

Deploy to Azure

In Visual Studio Code, press FT OR Ctrl+Shift+P to open Command Palette.

Search and Select Azure Static Web Apps:Create Static Web App...

In ensuing screens, select your subscription,

select an existing resource group or create a new one (if the screen is shown - not in below
Image),

decide and select on a free plan or standard plan (if the screen is shown - not in below
Image),

provide a name to the web app,

and then select the region to deploy.

The next screen provides a list of frontend frameworks. As the application is a vanilla



jJavascript application, choose Custom.

Next, provide the location of application code - /src as this is where index.html resides.
Leave the API location blank for now (if the screen is shown - not in below image)

and finally provide the location of build output also /src (this is primarily useful if a
framework such as angular, react, svelte, etc is used and in such cases, the build folder
location goes here).

Azure Static Web Apps: Create Static Web App... recently used 455

Azure Static Web Apps: Create Static Web App... (Advanced)
Azure Static Web Apps: Create HTTP Function...

Azure Functions: Create Function...

Git: Commit All

Git: Checkout to...

Beautify JSON

Azure Free Trial (recently used)

Microsoft Azure Sponsorship

Create Static Web App (1/5)

mycalendar

Enter a name for the new static web app. (Press 'Enter’ to confirm or *Escape’ to cancel)

Create Static Web App (2/5)

East Asia (recently used)
East US 2

West US 2

West Europe

Central US

Create Static Web App (3/5)

Angular Framework
React

Svelte

Vue.js

Blazor

Next.js (SSR)

Next.js (static export)

Nuxt 3

Gatsby

Hugo

VuePress

= Create Static Web App (4/5)

/src

Enter the location of your application code. For example, /" represents the root of your app, while
‘fapp’ represents a directory called ‘app’. (Press "Enter’ to confirm or ‘Escape’ to cancel)

< Create Static Web App (5/5)

/5rc

Enter the location of your build output relative to your app’s location or leave blank if it has no
build. For example, setting a value of ‘build" when your app location is set to ‘app’ will cause the
content at "app/build’ to be served. (Press ‘Enter’ to confirm or ‘Escape’ to cancel)

Finally, a message is shown in Azure Activity log stating that the Azure Static Web Site is
created and a git pull is executed to download a workflow file from github and kept in
.github/workflows folder. One of the best things about Static Web Apps is the fact that Cl /



CD is integrated using Github Action Workflows and anything that is now added to the
workspace and then pushed to github repository will get deployed on Azure automatically.

AZUBE ACTIVITY LG

Azure and Github credentials will have to be provided in the above process.

Check the all resources screen in Azure Portal to find the mycalendar static web app. On
selecting the same, a page loads which shows the static webapp URL, the source code,
action run history and the workflow which was pulled to the workspace (the last three are
github links).

Microsoft Azure O Segh esnitcon, senviiey and docs [Ga /) % R | T .u|.iI|';;'-1h;l_|'ﬂ'_I:-:r-1u|-Ir:n1

All resources

reale KBlahage vew i#lres Expai B OS5
Sl el sl Rartosaicn group eduasls ol =,

ﬁ‘ u P pimiriee i n

= mycalendar

Browse Delete Manage deployment token Send us your feedback
Cherviaw Esseritinle
Access control (AM)
¥ Tags

{* Disgnose and sobve problems
Sottings 4bf#1dadd- FOE0-4ebf-b175-96713%0dc1 2H

.1 Configuraticn Global

- Applcation nssghis

Free
M Custom domains

APz

Confirm that the static website URL loads.

Create Application Interface

To create the calendar interface, the free and open-source DayPilot Lite library is used.

Download the library and add the daypilot-all min.js to the src folder.




V' SIC
J5 daypilot-all.min.js

<2 index.html

Update index.html code to the one below.

<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<script src="daypilot-all.min.js"></script>
<title>My Calendar</title>
</head>

<body>
<main>
<hl>My Calendar</h1l>

</main>

<div id="mycalendar"></div>

<script type="text/javascript">
const mycalendar = new DayPilot.Month("mycalendar", {
startDate: "2023-01-01",
onTimeRangeSelected: async function (args) {

const colors = |
{name: "Blue", id: "#3c78d8"},
{name: "Green", id: "#6aa84f"},
{name: "Yellow", id: "#f1c232"},
{name: "Red", id: "#ccoo000"},

15

const form [
{name: "Text", id: "text"},
{name: "Start", id: "start", type: "datetime"},
{name: "End", id: "end", type: "datetime"},
{name: "Color", id: "barColor", options: colors}

15

const data = {
text: "Event",
start: args.start,
end: args.end,
barColor: "#6aa84f"




};

const modal = await DayPilot.Modal.form(form, data);

mycalendar.clearSelection();

if (modal.canceled) {
return;

mycalendar.events.add({
start: modal.result.start,
end: modal.result.end,
id: DayPilot.guid(),
text: modal.result.text,
barColor: modal.result.barColor

})s
}

1)

mycalendar.events.list = |

{
"start": "2023-01-12T10:30:00",
"end": "2023-01-12T15:30:00",
"id": "225eb40f-5f78-b53b-0447-a885c8e92233",
"text": "React Interview with Shirish Kumar",
"barColor":"#cc0000"

}s

{
"start": "2023-01-16T12:30:00",
"end": "2023-01-18T17:00:00",
"id": "1f67def5-eldd-57fc-2d39-eb7a5f8e789a",
"text": "Kubernetes Interview with Ramesh Bhat",
"barColor":"#3c78d8"

}s

{
"start": "2023-01-25T710:30:00",
"end": "2023-01-25T716:00:00",
"id": "aba78fd9-09d0-642e-612d-0e7e002c29f5",
"text": "AAD Interview with Girish C",
"barColor":"#cc0000"

}

15

mycalendar.init();

</script>




</body>

</html>

In the above code, a div with id mycalendar is added which is referenced in the javascript.
DayPilot.Month ensures that the view is month based and the starting date of the calendar
is stated using the startDate attribute.

onTimeRangeSelected section allows the user to add an event by either clicking on a single
date or selecting multiple dates by dragging on screen. DayPilot.Modal.form provides a
form with values to update and Save the event.

mycalendar.events.list adds existing event data by adding an array of data in a format the
library expects.

In the bash terminal, go to mycalendar folder and run the following command.

swa start src

This command will be available if Static Web Apps CLI is installed. Testing and Debugging is one of
the primary challenges with serverless as application is broken into smaller pieces and replicating
the environment locally for developer is hard. Static Web Apps CLI solves this problem as we will see
later. src is the folder where static content including HTML, images, javascript and stylesheets are
kept.

On running the command Azure Static Web Apps emulator starts and the calendar
application can be accessed at http://localhost:4280.

Confirm that events added in code can be viewed as well as new events can be added by
clicking on a date.

Implement Authentication

Azure Static Web Apps has support for GitHub, Twitter, and Azure Active Directory for
authentication by default. Moreover, Static Web Apps CLI provides authentication emulator
to mock responses from the three providers mentioned.

To enable login using github update the HTML main content area (between tags) to the
content below.

<main>
<hl>My Calendar</h1l>
<p>

<div id="login" style="display: flex; justify-content: end;"><a href="/.auth/login/gif

</main>




After authentication, to get access to user information such as user id / email, Azure Static
Web Apps provides an APl endpoint which means not only do developers not have to
implement and maintain any oauth related code but also the endpoint does not face
serverless architecture challenges like cold start delays.

Update the «<script> area with code below under mycalendar.init()

mycalendar.init(); //Add the code below

const app = {
getUserInfo() {
return fetch('/.auth/me")
.then(response =>{
return response.json();
}).then(data =>{
const { clientPrincipal } = data;
console.log(clientPrincipal);
if (clientPrincipal !=null){
const userDetails= clientPrincipal.userDetails;
return userDetails;
}
return null;
)
}s
init(){
app.getUserInfo()
.then(user =>{
console.log(user);

)
}
}s5
app.init();
</script>

In the above code init function calls getuserInfo function which in turn calls the direct-
access endpoint /.auth/me and from the resultant response gets the github userid (provided
authenticated by github, else returns null) which gets logged in the browser console.

In the bash terminal, run the following command again.

swa start src

Load the web page in a browser in incognito mode. After clicking on the login button, the

emulator mock screen comes up.




D | B Mew tab ¥ ™ Azure Siatic Web Apps Emulator X —|—

« O M@ i) localthost-4280/ auth/login/github

BT Microsoft Azure

Azure Static Web Apps Auth

Provider github

Lser 1D 4002e3b/e19a7392200 719992967/ 17ab
Usemame arman

User's roles dnNonymous

authenticated

Liser's claims [l

B e R
FOCURTENLIGN

In the mock screen, add your first name in the Username field as shown in image (arnab is
shown in image) and select Login.

The calendar interface shows up as Index.html is loaded. Open developer tools and go to
Console. ClientPrincipal data as well as Username is shown as in the image below.



[h) 6 Welcome Elements Console Sources

2 ) top ® B Filter Default levels

v Object B8
P claims: []
identityProvider: "github”
userDetails: "arnab”
userId: "4602e3b7el1%a7392280719F9296717ab"
P userRoles: (2) ['anonymous’, 'authenticated’]

P [[Prototype]]: Object

arnab

Create API and integrate with Static Site

Running logic on the browser has certain limitations namely the ability to connect to data
stores / databases to persist data and then retrieve the same. That is where the necessity to
run some part of the code server side comes in.

Azure Static Web Apps supports serverless APl endpoints powered by Azure Functions
where HTTP request triggers the function. The API route is fixed at /api. Also, Azure Static
Web Apps extension for Visual Studio Code creates the Function templates in api folder by
default. Also, in local development environment API will run in port 7071 and not port 4280
where the static site runs. This in normal cases will lead to Cross-Origin Resource Sharing
(CORS) errors like Access to XMLHttpRequest at ""http.//localhost:7071/api/events"" from
origin ""http.//localhost:4280"" has been blocked by CORS policy. But, Azure Static Web Apps
(using Reverse Proxy) as well as the CLI (for local development scenario) takes care of this

challenge as it makes the static web app and API appear to come from the same domain.

The calendar application allows users to view their existing events as well as add new
events to the calendar.

For viewing existing events use case, GET method at route endpoint events will be used
which means that the full api endpoint at the static site will be api/events
For adding new events use case, POST method at the same endpoint can be used.

View existing events use case

In Visual Studio Code, press FT1 OR Ctrl+Shift+P to open Command Palette. Search and
Select Azure Static Web Apps: Create HTTP Function.

In ensuing screens select C# as language,

add GetEvents as Function Name,

add <Your_First_Name>.MyCalendar as Namespace (Arnab.MyCalendar in my case)



and Anonymous as Access Rights (Good enough for POC scenarios but never use this
setting in production).

Security is important. Do check out Azure Architecture - Serverless Functions security

e

Azure Static Web Apps: Create HTTP Function... recently used £o%
Azure Functions: Create Function...

Git: Commit All

Git: Checkout to...

Beautify JSON

C# (recently used)

JavaScript

TypeScript

Python

Python (Programming Model V2)

Getbvents

Provide a function name (Press ‘Enter’ to confirm or 'Escape’ to cancel)

i Create new HTTP trigger (3/4)

Arnab.MyCalendarl

Provide a namespace (Press 'Enter’ to confirm or ‘Escape’ to cancel)

7 Create new HTTP trigger (4/4)
AccessRights

Anonymous (recently used)

Function
Admin

A new folder in the workspace gets created named api and a Functions project gets

created.

A simple piece of code is written next just sufficient to test the integration of APl with static site.

In GetEvents.cs file update the contents to the code below.

using System;
using System.IO;
using System.Threading.Tasks;



using
using
using
using
using
using
using

System.Collections.Generic;
System.Text.Json;
Microsoft.AspNetCore.Mvc;
Microsoft.Azure.WebJobs;
Microsoft.Azure.WebJobs.Extensions.Http;
Microsoft.AspNetCore.Http;
Microsoft.Extensions.lLogging;

namespace Arnab.MyCalendar

{

public static class GetEvents

{

[FunctionName("GetEvents") ]

public static async Task<IActionResult> Run(
[HttpTrigger(AuthorizationLevel.Anonymous, "get", Route = "events")] HttpReque
ILogger log)

log.LogInformation("Get Events list");
string username = req.Query["u"];
log.LogInformation(name);

string json = @"[

{

""start"": ""2023-01-12T10:30:00"",

""end"": ""2023-01-12T15:30:00"",

"t"id"": ""225eb40f-5f78-b53b-0447-a885c8e92233"",
""text"": ""React Interview with Shirish Kumar"",
""barColor"":""#cco0000""

}s

{

"U"start"": ""2023-01-16T12:30:00"",

""end"": ""2023-01-18T17:00:00"",

""id"": ""1f67def5-eldd-57fc-2d39-eb7a5f8e789a"",
""text"": ""Kubernetes Interview with Ramesh Bhat"",
""barColor"":""#3¢c78d8""

}s

{

""start"": ""2023-01-25T10:30:00"",

""end"": ""2023-01-25T16:00:00"",

""id"": ""aba78td9-09d0-642e-612d-0e7e002c29f5"",
""text"": ""AAD Interview with Girish C"",
""barColor"":""#cco000""

}

]ll;
List<Dictionary<string, string>> results=null;

if (username == "arnab"){
results =JsonSerializer.Deserialize<List<Dictionary<string, string>>>(json);

}




return new OkObjectResult(results);

In the above code we first specify the HTTP method (GET) and route (events).
The API accepts a querystring 'u' which contains the username value.
There is a hardcoded json string on similar lines as in index.html which is deserialized and

returned provided the username is equal to a hardcoded value.

The hardcoded value here is arnab but you should update that to your first name provided you are
going to use that as username in mock authentication screen. Also do remember to change the

namespace to <Your_First_Name>.MyCalendar .
To call this APl from frontend, update index.html. Block comment or remove

mycalendar.events.list code, add a loadevents function which will call the API and call this
function from init as code shown below.

/* mycalendar.events.list = [

{
"start": "2023-01-12T10:30:00",
"end": "2023-01-12T15:30:00",
"id": "225eb40f-5f78-b53b-0447-a885c8e92233",
"text": "React Training",
"barColor":"#ccoo000"

}s

//more data below

1, */

mycalendar.init();

const app = {
loadEvents(user) {
console.log(user);
var url = new URL('/api/events')
var params = {u:user}
url.search = new URLSearchParams(params).toString();
//console.log(url);
fetch(url)
.then(response =>{
return response.json();
}).then(data =>{
//console.log(data);
mycalendar.update({
events: data




})s

)
}, //next there will be getUserInfo()

init(){
app.getUserInfo()

.then(user =>{

console.log(user);
if (user !=null){
app.loadEvents(user);
}
})
}
¥
app.init();

In the code above getUserinfo method is called and if usename is not null, loadEvents
method is called where the username is added to the APl endpoint as querystring / search
parameters and the return data is updated in the calendar.

To test the API and its integration with the static site, in the bash terminal, run the
following command.

swa start src --api-location api

When the web site loads, login with as username in the ensuing emulator mock screen. The
calendar gets updated with data but this time the data is sent from server.

In case you face any challenge / errors in running the above SWA CLI command, open a new bash
terminal, ensure you are in api folder, update API urls in index.html from ' /api/events ' to
"http://localhost:7071/api/events ' and run the following command to run just the Azure function and

in the first terminal run swa start src as before. This style of running is also useful in debugging as
you bifurcate the running of frontend site and backend API. But, do remember to switch back the
urls to its earlier form before publishing the application to Azure.

func start --cors http://localhost:4280 --port 7071

Add new events use case

Create a new HTTP Function as before and name this PostEvents.

In PostEvents.cs file update the contents to the code below.

using System;
using System.IO;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;



using Microsoft.Azure.WebJobs.Extensions.Http;

using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.Logging;
using Newtonsoft.Json;

namespace Arnab.MyCalendar

{
public static class PostEvents
{
[FunctionName("PostEvents")]
public static async Task<IActionResult> Run(
[HttpTrigger (AuthorizationLevel.Anonymous, "post", Route = "events")] HttpReqt
ILogger log)
{
log.LogInformation("Post Event");
string requestBody = await new StreamReader(req.Body).ReadToEndAsync();
dynamic data = JsonConvert.DeserializeObject(requestBody);
string cuser = data?.cuser;
dynamic cevent=data?.cevent;
log.LogInformation(cuser);
string eguid =Guid.NewGuid().ToString();
cevent.id=eguid;
return new OkObjectResult(cevent);
}
}
}

»

In the above code, username and event data is being retrieved from request body, a Guid

Is created and added to the event data and the event data with Guid is returned.

To call this API from frontend, update index.html. Add an addevents function and update
the mycalendar onTimeRangeselected function.The final script section in index.html is as
code shown below

<script type="text/javascript">
const mycalendar = new DayPilot.Month("mycalendar", {
startDate: "2023-01-01",
onTimeRangeSelected: async function (args) {

const colors = |
{name: "Blue", id: "#3c78d8"},
{name: "Green", id: "#6aa84f"},
{name: "Yellow", id: "#f1c232"},
{name: "Red", id: "#cc0000"},

[




const form = [
{name: "Text", id: "text"},
{name: "Start", id: "start", type: "datetime"},
{name: "End", id: "end", type: "datetime"},
{name: "Color", id: "barColor", options: colors}

5

const data = {
text: "Event",
start: args.start,
end: args.end,
barColor: "#6aa84f"

};

const modal = await DayPilot.Modal.form(form, data);

mycalendar.clearSelection();

if (modal.canceled) {
return;
}
app.getUserInfo()
.then(user =>{
console.log(user);
if (user !=null){
const event = {
start: modal.result.start,
end: modal.result.end,
text: modal.result.text,
barColor: modal.result.barColor
¥

app.addEvents(user,event);

})

Ik

mycalendar.init();

const app = {
loadEvents(user) {
console.log(user);
var url = new URL('/api/events')
var params = {u:user}
url.search = new URLSearchParams(params).toString();
//console.log(url);




fetch(url)
.then(response =>{
return response.json();
}) . then(data =>{
//console.log(data);

mycalendar.update({
events: data
})s
)

}s

addEvents(user,event){
fetch('/api/events', {
method: 'POST',
headers: {
"Accept': 'application/json’,
"Content-Type': 'application/json'
}s
body: JSON.stringify({
cuser:user,
cevent:event,

1),
1)

.then(response =>{
console.log(response);

return response.json();

}).then(data =>{
console.log(data);
mycalendar.events.add(data);

1)

}s
getUserInfo() {

return fetch('/.auth/me")
.then(response =>{
return response.json();
}).then(data =>{
const { clientPrincipal } = data;
console.log(clientPrincipal);
if (clientPrincipal !=null){
console.log("inside clientprincipal not null");
const userDetails= clientPrincipal.userDetails;
return userDetails;
}
return null;
)
}s
init(){
app.getUserInfo()
.then(user =>{




console.log(user);

if (user !=null){
document.getElementById("login").style.display = "none";
app.loadEvents(user);

}

1)

}
}s
app.init();
</script>

The new code in onTimeRangeSelected calls getuserinfo and if username is not null sends
the username and event data to addevents function which makes the POST call to the API
and updates the calendar with return data.

Once again test the API and its integration as before to confirm that the code works.

Implement Persistence layer with Cosmos DB

Run the Cosmos DB emulator. Right click and select Open Data Explorer.

Open Data Explorer...

Reset Data...

S

' About...

Rate Limiting

Exit

19:54
A W} O ENG
. 09-01-2023

Run the following command in the bash terminal to configure the connection string
(available from Primary Connection String in Explorer screen) in the function project
settings in the local settings.json file.

func settings add CosmosDBConnection "AccountEndpoint=https://localhost:8081/;AccountKey=(

local.settings.json file should now be added to the connectionstring as below.

"ConnectionStrings": {

"CosmosDBConnection": {




"ConnectionString": "AccountEndpoint=https://localhost:8081/;AccountKey=C2y6yDjf5/R-
"ProviderName": "System.Data.SqlClient"

»

Emulator connection string is same always unless changed manually. Also local.settings.json is not
pushed to github and the connection string there is only useful for local development. The
command / process to add connection string in Azure is different and we will see so later.

In the emulator screen select Explorer and then New Container.
Add a new Database with name myCalendar, state the Container Name as eventsCollection
and Partition Key /userName.

New Container b4

* Database id (&)

(@ Create new () Use existing

rnyCalendar

i
I

Share throughput across containers (1)

* Database throughput (autoscale) ()
(® Autoscale () Manual
Estimate your required RU/s with capacity calculator,

Database Max RU/s (1)

4000

Your database throughput will automatically scale from 400 RU/s
{(10% of max RU/s) - 4000 RU/s based on usage.

Estimated monthly cost (USD) (& §35.04 - $350.40 (1 region, 400 -
4000 RU/s, $0.00012/RU)

* Container id ()

eventsCollection

* Partition key (1)

fuserMName

Unique keys (U

- Add unigue key

»  Advanced




The database and Container can be viewed now in Explorer.

E New Container -,

Quickstart

SQL API
Explorer x MyCalendar
Scale
@ x Events
ltems
Settings
» Stored Procedures
» User Defined Functions

P Triggers

An easy declarative way to connect Azure services including Cosmos DB to Azure functions
is using bindings. Bindings are implemented in extension packages. Run the following
dotnet add package command in the terminal to install the Cosmos DB extension package.

dotnet add package Microsoft.Azure.WebJobs.Extensions.CosmosDB --version 4.0.0

Add a new file in api folder and name the same event.cs. This file will have two classes, one
in the data structure format in which data arrives from frontend and the other is a structure
format as the JSON data that will be persisted in Cosmos DB.

using System;
namespace Arnab.MyCalendar

{

public class CalendarEvent

{
public string id { get; set; }
public string userName{ get; set; }
public string startsAt { get; set; }

public string endsAt { get; set; }
#nullable enable
public string? eventTitle { get; set; }

public string? barColor { get; set; }
public DateTime eventCreateDate{ get; set; }




public class ClientPostEvent

{
#nullable enable
public string? id { get; set; }
public string? start { get; set; }
public string? end { get; set; }
public string? text { get; set; }
public string? barColor { get; set; }
}
public class ClientData
{
public string cuser { get; set; }
public ClientPostEvent cevent { get; set; }
}

In the code above calendartvent will be used to persist data in Cosmos DB.

Update the contents of PostEvents.cs to the code below.

using System;

using System.IO;

using System.Text.Json;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.AspNetCore.Http;

using Microsoft.Extensions.Logging;

namespace Arnab.MyCalendar

{

public static class PostEvents
{
[FunctionName("PostEvents") ]
public static async Task<IActionResult> Run(
[HttpTrigger(AuthorizationLevel.Anonymous, "post", Route = "events")] HttpReqt
[ CosmosDB(
databaseName: "myCalendar",
containerName: "eventsCollection",
Connection = "CosmosDBConnection")]
IAsyncCollector<CalendarEvent> eventsOut,ILogger log)

log.LogInformation("Post Event");

string requestBody = await new StreamReader(req.Body).ReadToEndAsync();
ClientData data = JsonSerializer.Deserialize<ClientData>(requestBody);




string cuser = data?.cuser;

ClientPostEvent cevent=data?.cevent;

log.LogInformation(cuser);

string eguid =Guid.NewGuid().ToString();

cevent.id=eguid;

CalendarEvent nevent = new CalendarEvent() {
id = cevent.id,
userName= cuser,
startsAt=cevent.start,
endsAt=cevent.end,
eventTitle=cevent.text,
barColor=cevent.barColor,
eventCreateDate=DateTime.Now

};

await eventsOut.AddAsync(nevent);
return new OkObjectResult(cevent);

»

In the code above, the presence of bindings enable in connecting to database seamlessly

with the attribute cosmosbs. Another parameter eventsout is of type
IAsyncCollector<CalendarEvent> ensuring that any instance of it calling Addasync gets an
instance of calendarkvent persisted in the database.

Update the contents of GetEvents.cs to the code below.

using System;

using System.IO;

using System.Threading.Tasks;

using System.Collections.Generic;

using Microsoft.AspNetCore.Mvc;

using Microsoft.Azure.Cosmos;

using Microsoft.Azure.WebJobs;

using Microsoft.Azure.WebJobs.Extensions.Http;

using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.logging;

namespace Arnab.MyCalendar

{

public static class GetEvents

{

[FunctionName("GetEvents")]
public static async Task<IActionResult> Run(
[HttpTrigger(AuthorizationLevel.Anonymous, "get", Route = "events")] HttpReque




[ CosmosDB(

databaseName: "myCalendar",

containerName: "eventsCollection",

Connection = "CosmosDBConnection")] CosmosClient client,
ILogger log)

log.LogInformation("Get Events list");
string name = req.Query["u"];

List<Dictionary<string, string>> results=new List<Dictionary<string, string>:
Container myContainer = client.GetDatabase("myCalendar").GetContainer("events(
QueryDefinition queryDefinition = new QueryDefinition(
"SELECT * FROM items i WHERE (i.userName = @searchterm)")
.WithParameter("@searchterm", name);

string continuationToken = null;
do

{

FeedIterator<CalendarkEvent> feedIterator =
myContainer.GetItemQueryIterator<CalendarEvent>(
queryDefinition,
continuationToken: continuationToken);

while (feedIterator.HasMoreResults)

{
FeedResponse<CalendarEvent> feedResponse = await feedIterator.ReadNex
continuationToken = feedResponse.ContinuationToken;
foreach (CalendarEvent item in feedResponse)

{

results.Add(new Dictionary<string, string>(){
{"start", item.startsAt},
"end", item.endsAt},
"id", item.id},
{"text", item.eventTitle},
{"barColor", item.barColor}

})s

}

} while (continuationToken != null);

return new OkObjectResult(results);

»

In the above code, a Azure Cosmos DB binding provided cosmosClient instance, available in

extension version 4.x, is used to read a list of documents. With the access of CosmosClient



instance, one can do complex stuff with Cosmos DB in Static Web Applications / Functions.
Here, cosmosclient object is used to configure and execute requests against the Azure
Cosmos DB service. patabase is the reference to database and container a reference to
container and they both are validated serverside.

QueryDefinition helps with the query and its parameters. Feediterator<> helps in tracking
the current page of results and getting a new page of results while FeedrResponse<>
represents a single page of responses which is iterated over using a foreach loop.

Also notice the usage of continuationToken and .withParameter goodness.

Though this code gets all events of a user, in production scenarios you would not wish to do that,
and along with username also send start date and end date in query string to ensure limited amount
of data is accessed or retrieved.

To test open a new browser in incognito / inPrivate mode, login and confirm that you are
able to add new events.
To check whether the events are being persisted, check the Cosmos DB emulator explorer

screen to confirm data is being persisted.

== [ L. - e T -,
r B [ A ' Mewltem  [F [% Delete Upload Item
Cuickstart
0l AP
S0L AP sventslollectio.. *
Exploras bl myCalendar
— Scale
(L)
= = E eventzCollection id fuserMame
Repaort 2 h
IEsue tems e e : ; :
Bd576235-ch53.. amab b 2 “id*i “Hd5ME2I5-ch53-4c97 -aldB-49c5dcedd1 29",
Settings A o "userlame™: "arnab”,
b “stactaftT: TE1711/520203 @8i08:807
Srored Procedures 3 s L : iy
" ; endsat™: TEL/12/2023 B0:@P: 0",
¥ Uesr Delined Functions eventTitle”: "Ewvent”,
“barfolor": "FhaaBif",
’ Iriggers 8 "aventCreateDate™: “2833-21-10T7T18:49:43.3863736+85: 3087,
_rid®: “HGABALWYq-80AAAAARAAA==
" self™; "dbs/NGARAA=={colls /NGABALNT q-B=/docs /HEARALWT g -BEAAAAAAAAA A==/~ ,
11 " _wtagT: "\ "eolodaig- 80e-888a- 2476 - 39T SaBE1A0 7"
¥ _attachments®: “attachments/",
! 1

Next close the browser and open another browser again in incognito / inPrivate mode,
login and confirm that you are able to view the events added earlier and persisted in
Cosmos DB.

Deploy application to Azure

Provision Database

Log in to Azure Portal, Search for Cosmos DB and select the top result.
Next create Cosmos DB account by selecting Create under Azure Cosmos DB For NoSQL
box.



Mlicroscft Azure L - Segach resources. serveces, shd docs [G+)

Create an Azure Cosmos DB account

Which APl best suits your workload?

Arure Cosmos DB s a fulby managed MoSOl and relational database service for I:u_.iln:lu.-u_'| cicala e hlﬂh performance applications

Tx start, select the APL o create o new accounl The AP sefection canmot be changed aliéer acoount creation.

Azure Cosmos DB for NoSQL Azure Cosmos DB for MongoDB Azure Cosmos DB for Apache Cassandra

Arure Cosmaos D5 come, or nathe AP for working with Fully managed database service for apps written for Fully managod Cassandra database service for apps written fos
dipoumesnits. Supports last, Rexble development with Gl ize MongolDR. RBecommednsbed o you have snsting MongoDB Apache Cassandra Recommended i you have sasting

SOL querny languiage and client Bbraries foe (MET, JavaScripl workheads that you plan to migrate to Anse Cosmos DB, Cassandia workloads that you plan ko migrate to AZure
Pythan, and lava Cosmos [

Azure Cosmos DB for Table Azure Cosmos DB for Apache Gremlin Azure Cosmos DB for PostgraSCL

Fully managed database sevvice for apps writien for Azunme Fually managed graph clatabase sprvicn -.|~'.in!] the Gremlin Fually managed rebational datpbase service fog Postgretidl with

lable storage. Recommended if you have existing Azure Table query languasge, based on Apache TinkerPop project distribarted query exeoution, powered by the Citus open

siorane workiosds thal you plan 1o msgrate 1o Ase Codnos Recomamended lor e workiosds thal need o shorne source extension. Bulld new apps on single o mulb-node

LB refationships between data. clusters—with S poit for LR0NG, 'ijl'l}'ﬂl:ﬂl-al rich anedexing,
and high- performance scale-out

In the next screen, select subscription, select an existing Resource Group or create a new

one, add an account name, choose the nearest location and choose Serverless in capacity

mode.
Backup policy can be changed as well and locally redundant backups selected (sufficient
for POC). Selecting Review + Create button provisions the database.

= Microsoft Azure A Search resolrors, servioe, snd decs [G4)

Create Azure Cosmos DB Account - Azure Cosmos DB for NoSQL

Basics  Global Distribsation et kirg Backug Podicy Endayption s Farwiw + creale

Axrune Cosmos DB i5 a iy managed No® and relational databage servioe for bulidmg scaiable, high perormance apphcabons, for 30 days wiih anlimited rensvwans. Go 1o groduction startiing at $24/manth per daiabese, muliple contMreTs
ecliided

Project Details

mEiec] the subscrpbon 10 manage deployed nEsources and Dosis. LSe FESDANDS QIOUpRS Bke Ioiders 1D OIgandes snd manage s yool resdurces
AR EH Arure Free Tmal

[P} mis-aiacke- free

Instance Dletails

Secmiil ™ diTie mygralEndar -artecis
ORI |Acia PRCTHC) Bast Asie

Capacky mods Frosigned iheoughpat | ®

One could also try Cosmos DB by going to cosmos.azure.com/try. Selecting the account type - Azure
Cosmos DB For NoSQL would create a trial account for 30 days which would open in Azure Portal.




Your Azure Cosmos DB for NoSOL sandbox account is now ready for use in Azure portal.

- Open it in Azure portal and follow our quick start guide to get started.
Congratulations

Once Azure Cosmos DB account page opens up, select the Data Explorer tab and a similar
interface as the Data Explorer emulator opens up. Select New Container box, Add a new
Database with name myCalendar, state the Container Name as eventsCollection and
Partition Key /userName.

Once the database is created, select the Connect box to view the connection string (OR
select key under settings in left bar).

= DA

Welcome to Azure Cosmos DB

slokally distnibuted, multi-model database serace for any scale

*  ROTERDOES

Launch quick L Mew Connect

start Container L

Copy the same and update the local settings.json connection string in Visual Studio Code.
Run the application and open it in a browser, add new events and confirm that they
persisted in Azure Cosmos DB by viewing them in Azure Cosmos DB data explorer.

The Cl / CD Magic

The workflow file in .github/workflows folder needs to be updated to let know the location
of api code.

Search for api_location in Repository/Build Configurations section and update the value to
/api.

OPEM EDITORS

MYCALEMEMAR




Cosmos DB connection string was configured in local.settings.json file for local
development. But, this file is not available in production environment.

To configure the connection string in production, go to mycalendar Static Web App page in
Azure Portal, and select Configuration from the left hand bar. Click Add and in the next
screen add CosmosDBConnection as Name and Azure Cosmos DB connection string as
Value. Click OK and then Save.

mycalendar | Configuration «

I:]

Hefresh
B Overview

Access contral (LAM)

Application settings applicable to your site are encrypted at rest and transmitted over an encrypted channel. You can choose to

¥ Tags
display them in plain text in your browser by using the controls below.

L - &
'~ Diagnaze and sobse problems

. Ervironment | Production
Sethings

I.] Configuration
] — Add = Showwvalues 27 Advanced edil W Delote
. .-'l.|.|i.1|r::.:[|-:.lr||||.'1|-§||‘|I'.
B Custom domains
AP
% Emvironments

¥ NGO appisCatnn U O Gispiay
T FRole management N0 applcaton setting to display

Add application setting

Mame CosmosDBConnection 0

Value PecountEndpoint=https,//d545e2b T -0eed-4-231-blee documents. azure. com:44 3/ AccountKey = hDGSzqh g ARZ EwDu SEWwWW LojgympmiCaLa INBL T iy

In Visual Studio Code Terminal, open a command prompt, and from mycalendar folder run
the following command to commit all code changes and push them to Github.

Though in this article / post, this step is done at the very end, in application development lifecycle,
this ought to be done after each small change (after interface design, after authentication

implementation, after API addition, etc)

git add -A
git status

git commit -m "Final Code with GET, POST, Auth and Azure Cosmos DB"
git push -u origin main




D: \cosmosdb\mycalendar>git commit -m "Final code with GET, POST, Auth and Azure Cosmos DB”
[main c15b8c1] Final code with GET, POST, Auth and Azure Cosmos DB
15 files changed, 686 insertions(+), 25 deletions(-)

create mode 180644 .vscode/extensions.json

create mode 180644 .vscode/launch.json

create mode 180644 .vscode/settings.json

create mode 100644 .vscode/tasks.json

create mode 180644 api/.gitignore

create mode 1080644 apl/GetEvents.cs

create mode 180644 api/PostEvents.cs

create mode 188644 api/Properties/launchSettings.json

create mode 180644 api/apl.csproj

create mode 1080644 api/event.cs

create mode 180644 api/host.json

create mode 100644 src/daypilot-all.min.js

delete mode 180644 src/styles.css

D:\cosmosdb\mycalendar>git push -u origin main
Enumerating objects: 28, done.
Counting objects: 10@% (28/28), done.
Delta compression using up to 8 threads
Compressing objects: 188% (28/20), done.
Writing objects: 1@0% (22/22), 69.28 KiB | 2.66 MiB/s, done.
Total 22 (delta 1), reused @ (delta @), pack-reused ©
remote: Resolving deltas: 1@k (1/1), completed with 1 local object.
To https://github.com/c-arnab/mycalendar.git
9202@ed2..c15b8c1 main -> main
Branch 'main’ set up to track remote branch 'main’ from ‘origin’.

And then the magic happens in the Actions tab in github repository.

(=) Betloms [ Projacts

Actions M Al workflows

o ARTE ﬂl'll.'i uns

Final code with GET, POST, Auth and Azure Cosmos DB
/ giic Whels Apgs /00

& ciz add Azure Static Web Apps workflow file
atari Wels Apps C10D = T

'l Final code with GET, POST, Auth and Azure Cosmos DB #2

Build and Deploy lob

[ Busld and Deploy tob

) Pull Hscquest Job
i el - - dhep Lo

T (e T T

| would strongly urge all to check the steps (Build Azure and Build and Deploy) to understand all
that happens automatically.

Once this step completes, the application is built on Azure and is ready for users.




Run Application

Copy the URL from mycalendar Static Web Apps page in the Azure Portal and paste itin a
new browser window / tab.
On clicking Login, the application does not show the mock screen any more and goes to

- o ()

Authorize Azure Static Web Apps

github to authenticate.

Azure Static Web Apps by Azure App Service Static Web Apps

wants to access your c-arnab account

T
E
ity

Public data only

D ¢

Limited access to your public data

Cancel AU#’DHIE i&zure-App-
Service-Static-Web-Apps

Authorizing will redirect to
https://identity.2.azurestaticapps.net

@ Not owned or G) Created 2 years ago Fewer than 1K
operated by GitHub GitHub users

Learn more about OAuth

Then there is a consent screen from Microsoft and then the Login steps are complete.
Add new events, confirm that they persisted (Azure Cosmos DB data explorer) and then
open the page in another tab to check the loading of existing events.



My Calendar

Suinday Mooy Tusuoky Yy Wadnesgay Thidzosy Frilay Saburday
danuary 1 I 3 o 5 =
| AL Interview with Giish C

I FEar dnbeniese with Shisgd Ko

i 30 EL Faltrary 1 7 1

huak

Text
| AAD Interass with Gaish ©

ar
1ARGOE | 1100 Add

Ed
| 152023 | 1200 P

Color
[Falkre

0K m—m:

Challenges

Deploying a modern web application ain't easy.
Even though in this article / post, vanilla javascript is used (to ensure that this article is
useful to all developers with any framework skills such as angular, react, svelte, etc.), in

production use cases some framework would be used. This application will have to be built
and bundles generated.

While building the application all routes must be carefully configured to ensure users do
not receive 404 errors.

APIls would have to be built and it is very much possible that different APIs are built using
different technologies / languages.

User authentication will have to be implemented as well as APIs secured.



So, 'multiple servers' or even 'a cluster of servers' would have to be setup (to ensure
reliability and availability) to host these bundles and APIs and if the bundles and APIs are
hosted on different servers, CORS would have to be implemented or a Reverse Proxy
configured. Also, a global CDN for the frontend bundles will be needed.

SSL will have to be configured as well as the ability to have custom domains added.

When maintainability of the application over a period of time is taken into account, a
staging environment (similar to production) as well as an automated build process is
necessary as well.

Earlier even if one used cloud services, s/he would have to do all these.

Azure Static Web Apps takes care of all the above challenges and ensures that the
development team can focus on business requirements.

Business Benefit

The application developed can be used as a base for any scheduling application. Also, any
application built on the lines mentioned in the article / post using Serverless technologies
like Static Web Apps and Cosmos DB is beneficial as no necessity of server management,
charges for consumed storage only, better scalability, lower latency, quick updates, IDE
support (VS Code and SWA CLI), etc all lead to accelerated innovation.

Final Notes

Serverless on Azure - https://azure.microsoft.com/en-in/solutions/serverless/

Azure Static Web Apps - https://azure.microsoft.com/en-gb/products/app-service/static

Azure Cosmos DB - https://azure.microsoft.com/en-in/products/cosmos-db/
SWA Templates - https://github.com/staticwebdev
DayPilot Lite library - https://javascript.daypilot.org/download/

Source Code Repository - https://github.com/c-arnab/mycalendar

Top comments (0) ¢

Code of Conduct Report abuse

Did you enjoy this post?



