
Build a Movie Recommendation
System using Python and Azure
A Step-by-Step Guide to building a Movie Recommendation System

If you’re a movie lover, you know how difficult it can be to find a new film to watch. With so many
options across multiple platforms, it can be overwhelming to find what to watch. That’s where a
movie recommendation system comes in handy. By analyzing your past movie ratings and
preferences, a recommendation system can suggest new films and shows, you’re likely to enjoy.

Recommendation systems are essential AI-based tools that help predict the rating or preference
a user would give to an item. These systems have become ubiquitous and can be commonly
seen in online stores, and streaming services. There are several types of recommendation
systems and the one being discussed in this article is a content-based recommendation system.

A content-based recommendation system recommends items based on the characteristics of
the item and the user’s past preferences. These types of systems, represent each item (e.g., a
movie) as a vector of its characteristics (e.g., genre, cast, director, plot overview, keywords, etc.)

Solution Architecture
This article describes the process of building a movie recommendation system using python and
the open-sourced libraries Scikit-Learn and NLTK. Streamlit is used to create a simple web app
for interacting with the recommendation system and azure app service is used to deploy the app

Technical Implementation of the Solution

Step 1 — Gather the Data
For building the recommendation system, this tutorial will be using the TMDb dataset, which
contains data from over 10,000+ popular movies around the world. To download the dataset,
you will need to sign up for an account on the Kaggle website and agree to their terms of use.

Image from Author— Download the TMDb Movies Dataset

#import python packages

import numpy as np

import pandas as pd

#load dataset to pandas dataframe

df = pd.read_csv("tmdb_movies_data.csv")

Next, create a new Azure notebook and import all the necessary python packages. Extract the
downloaded zip file and read the movie dataset into a python data frame using pandas package.

Step 2 — Pre-Process the Data
Filter the data to remove any missing values. This is important because missing values can
induce unwanted bias in the data. You can alternatively try using one of the imputers given here.

#select the key columns that'll be used while building the model

movies =

df[['id','cast','director','genres','overview','original_title','keywords']

https://www.kaggle.com/datasets/muqarrishzaib/tmdb-10000-movies-dataset
https://scikit-learn.org/stable/modules/impute.html

]

#drop any null values from the database

movies.isnull().sum()

movies.dropna(inplace = True)

Remove any unwanted characters, duplicate data, or sparse values and transform the dataset
into a standard format. Next, stem the data to reduce the words in the dataset to their base form

#function to transform the data to a standard format

def convert(obj):

s = list(obj)

for i in range(len(s)):

if s[i] == '|':

s[i] = " "

temp_str = "".join(s)

temp_list = temp_str.split()

return temp_list

#apply the convert function to all the columns

movies['genres'] = movies['genres'].apply(convert)

movies['keywords'] = movies['keywords'].apply(convert)

movies['overview'] = movies['overview'].apply(lambda x:x.split())

movies['cast'] = movies['cast'].apply(convert)

movies['director'] = movies['director'].apply(convert)

#stem the data to reduce words to their base form

import nltk

from nltk.stem.porter import PorterStemmer

ps = PorterStemmer()

def stem(text):

y = []

for i in text.split():

y.append(ps.stem(i))

return " ".join(y)

Step 3 — Build the Model
Now, perform text vectorization to transform each movie into a vector. The approach described
in this article is called the Bag of Words. There also exist several other techniques for
performing text vectorization such as Binary Term Frequency, normalized TF/IDF and Word2Vec

#create a new column that combines all characteristics of the movie

movies['tags'] = movies['cast'] + movies['genres'] + movies['director'] +

movies['overview'] + movies['keywords']

#create a new dataframe consisting of id, original title, and tags

new_df = movies[['id','original_title','tags']]

new_df['tags'] = new_df['tags'].apply(lambda x:" ".join(x))

#apply the stem function to the tags column of your dataframe

new_df['tags'] = new_df['tags'].apply(stem)

Next, fit the model to the dataset after removing stop words. Stop words are small, common
words (such as “the”, “a”, and “and”) that are frequently used in the text but carry little meaning.

#perform text vectorization after disregarding stop words

from sklearn.feature_extraction.text import CountVectorizer

cv = CountVectorizer(max_features=10000,stop_words='english')

#transform the SciPy sparse matrix to NumPy array form

vectors = cv.fit_transform(new_df['tags']).toarray()

Mathematically, for any given vector the recommendation model outputs the five closest vectors.
Here, cosine distance is used in place of euclidean distance as in higher dimensionality, the
former gives a better measure of distance. This is referred to as the “Curse of Dimensionality”.

#calculate the cosine similarity between the vectors

from sklearn.metrics.pairwise import cosine_similarity

similarity = cosine_similarity(vectors)

After processing the results, make a pickle dump to save the objects for later use in the program

#take the pickle dump of the results for later use

import pickle

pickle.dump(new_df,open('movies.pkl','wb'))

pickle.dump(new_df.to_dict(),open('movie_dict.pkl','wb'))

pickle.dump(similarity,open('similarity.pkl','wb'))

Step 4 — Develop the Front-End
Install Streamlit in your virtual python environment, and create a new Python file called app.py.
This file will contain the code for designing the user interface of the web application and for
recommending movies to the user by calculating the cosine similarity between different movies.

To develop the front end for your web app, install Streamlit and create a new python file called
app.py. This file would contain the program for designing the user interface of your Streamlit app

import streamlit as st

import pickle

import pandas as pd

import requests

#Recommend movies based on content

def recommend(movie):

movie_index = movies[movies['original_title'] == movie].index[0]

distances = similarity[movie_index]

movies_list = sorted(list(enumerate(distances)), reverse=True,

key=lambda x: x[1])[1:6]

recommended_movies = []

recommended_movies_poster = []

for i in movies_list:

movie_id = movies.iloc[i[0]].id

recommended_movies.append(movies.iloc[i[0]].original_title)

recommended_movies_poster.append(fetch_poster(movie_id))

return recommended_movies,recommended_movies_poster

movies_dict = pickle.load(open('pickle/movie_dict.pkl','rb'))

movies = pd.DataFrame(movies_dict)

similarity = pickle.load(open('pickle/similarity.pkl','rb'))

Next, fetch the posters of the movies recommended by your recommendation system using the
TMDb API. You can create your very own API by logging into the TMDb developers API v3 site.

#Fetch posters from TMDb Database

https://developers.themoviedb.org/3/getting-started/introduction

def fetch_poster(movie_id):

response =

requests.get('https://api.themoviedb.org/3/movie/{}?api_key=ENTER_API_KEY_H

ERE&language=en-US'.format(movie_id))

data = response.json()

return "https://image.tmdb.org/t/p/w500/" + data['poster_path']

#Frontend Hero Section

st.title("Movie Recommender System")

selected_movie_name = st.selectbox(

'Select a movie to recommend',

movies['original_title'].values)

#Output Recommendations with Posters

if st.button('Recommend'):

name, posters = recommend(selected_movie_name)

col1, col2, col3, col4, col5 = st.columns(5)

with col1:

st.text(name[0])

st.image(posters[0])

with col2:

st.text(name[1])

st.image(posters[1])

with col3:

st.text(name[2])

st.image(posters[2])

with col4:

st.text(name[3])

st.image(posters[3])

with col5:

st.text(name[4])

st.image(posters[4])

Remember to replace the API key in line 3 of this program with your own API key. Once your
frontend is ready, run the app locally by opening the terminal and typing the following command:

streamlit run app.py

This command may take a few minutes before launching the web app on http://localhost:8501.

Step 5 — Deploying the WebApp on Azure
Next, you need to deploy the web app to Azure. If you don’t already have an Azure account, you
can sign up for a free trial here. Now, upload your files to a GitHub repository. Once your
repository is ready, go to the Azure dashboard, click on App Service and select the create option

Image from Author— Store your files in GitHub

In the resource creation window, enter any unique name for your app, select the runtime stack
as ‘Python 3.7’, and set the region field to any location close to you. Now, change the pricing
plan by clicking on change size and select the B1 tier. Keep all other fields to their default values

Image from Author— Create a new App Service

https://azure.microsoft.com/en-in/free/
https://github.com/thisisashwinraj/VerticalX-Recommendation-System
https://portal.azure.com/

In the deployments section, enable the continuous deployment option under GitHub actions
settings. Next, connect your GitHub account to Azure, select your username in the organization
field and choose your repository. If your repository has multiple branches select the main branch

Image from Author— Connect the App Service to your GitHub Repository

You don’t have to make any changes in the Networking and Monitoring sections, so simply click
on ‘Review + Create’. After reviewing the changes you made, click on create and wait for your
deployment to complete. Now in your repository, a new GitHub action workflow starts executing.

Image from Author— Wait for the Deployment to complete

Image from Author— Wait for the workflows to finish running

Wait for the workflow to finish executing. Now back in the Azure portal, go to the configurations
option, and select general settings. In the startup command field, enter the following command:

python -m streamlit run app.py -- server.port 8000 -- server.address

0.0.0.0

Once done, click on the save button and wait for the web app to be updated. Navigate to the
URL address of your web application and voila, your recommendation system is up and running.

Image from Author—Configure the startup command

Image from Author— Wait for the code to be deployed

To generate recommendations, simply select a movie from the dropdown list, and hit the
recommend button. The recommendation system will now show you the top 5 recommendations

Image from Author — Demo of the Movie Recommendation System

Knowledge Sharing and Best Practices
1. Curse of Dimensionality: While working with high-dimensional data, cosine distance is

used in place of euclidean distance as the former gives a better measure of distance.

2. API Key Secrecy: While working with API keys, make sure to keep them confidential
and protected from unauthorized access. This can be achieved by means of best
practices such as storing them in secure location and by using multi-factor authentication

Challenges in Implementing the Solution
The pickle files used in building the recommendation system exceed the file size limit of GitHub.
To upload such files, you’d need to use Git LFS. Every account receives up to 1 GB of free
storage and bandwidth. If your bandwidth quota exceeds this limit, you may need to purchase
an additional quota for Git LFS otherwise your application will not be able to fetch the pickle files

Business Benefits
Movie recommendation systems can provide a number of benefits for businesses in the
entertainment industry. One of the main benefits is the ability to increase customer engagement
and satisfaction by providing personalized recommendations to users. This can lead to
increased repeat business, positive word-of-mouth, and customer loyalty. Additionally, these
systems can help businesses to better understand their customers and their viewing habits,
allowing them to make more informed decisions about content creation and distribution
strategy. This results in increased revenue through targeted advertising and product placement.

Conclusion and Final Thoughts
You can further optimize the performance of your recommendation system by fine-tuning the
model parameters or by switching to some more dynamic algorithms. You can also deploy your
recommendation system after containerizing the app using Docker and Azure container registry.

References
1. TMDb Movies Dataset:

https://www.kaggle.com/datasets/balaka18/tmdb-top-10000-popular-movies-dataset
2. TMDb API Site:

https://developers.themoviedb.org/3/getting-started/introduction
3. Streamlit Documentation:

https://docs.streamlit.io/
4. GitHub Repository:

https://github.com/thisisashwinraj/VerticalX-Recommendation-System
5. Scikit-Learn Documentation:

https://scikit-learn.org/stable/user_guide.html
6. Azure App Service:

https://learn.microsoft.com/en-us/azure/app-service/quickstart-python?tabs=flask

Written by Ashwin Raj (linkedin.com/in/thisisashwinraj/)

https://www.kaggle.com/datasets/balaka18/tmdb-top-10000-popular-movies-dataset?select=movies_tmdb_popular.csv
https://developers.themoviedb.org/3/getting-started/introduction
https://docs.streamlit.io/
https://github.com/thisisashwinraj/VerticalX-Recommendation-System
https://scikit-learn.org/stable/user_guide.html
https://learn.microsoft.com/en-us/azure/app-service/quickstart-python?tabs=flask
https://www.linkedin.com/in/thisisashwinraj/

