
Automate informational messages using

Azure IoT Architecture

In this blog, we are going to learn about automating messages and

emails using Azure IoT architecture. This is an introductory blog

which will help us to know more about Azure IoT and its effective

usage in our daily life.

Problem Statement

In our everyday life, messages and emails are an important factor.

Starting from a professional email which has to be sent to close an

important deal or texting someone about your whereabouts. We

need internet to survive in this era of Emails and texts.

Microsoft to the rescue!

“Necessity is the mother of invention.” The primary drive of force

for new invention is a need. As technology is evolving, AI is taking

shape. Machines started to learn on its own. Automation is the new

trend!

Microsoft Azure brings you IoT solutions by assembling Azure PaaS

(Platform-as-a-service). Devices connected to cloud can access and

explore the data to form customised insights about their

environment. Azure IoT supports wide range of devices, supports

smart server gateways, and lots more to explore. Devices can directly

connect to Azure to send and receive messages on IoT solution.

IoT hub Message

Microsoft Azure allows bi-directional communication with devices.

The IoT hub is used to communicate with your device by sending

messages from your device to your IoT solution backend and vice-

versa. Some of the features like cloud-to-device messaging, device-

twins, and device management are only available in the standard tier

of IoT hub, so keeping up to the top tier is a must.

There are two ways of creating and reading messages via IoT hub:

 Device-to-cloud messaging

 Cloud-to-device messaging

 To use the above two methods for seamless interoperability across

protocols IoT hub defines a common set of messaging protocols that

are available in all device facing protocols.

Creating and Reading IoT Hub Messages

A device-to-cloud (D2C) has certain characteristics such as

 property names and values can only contain ASCII

alphanumeric characters, plus {'!', '#', '$', '%, '&', ''', '*', '+', '-',

'.', '^', '_', '`', '|', '~'}

 To use the message body in an IoT Hub routing query we must

provide a valid JSON object for the message and set the

content type property of the message to

“application/json;charset=utf-8”

The message body should look like this:

{

 "timestamp": "2022-02-08T20:10:46Z",

 "tag_name": "spindle_speed",

 "tag_value": 100

}

(Source : https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-messages-construct)

A common use of application properties is to send a timestamp from

the device using the “iothub-creation-time-utc” property to record

when the message was sent by the device. The format of this

timestamp must be UTC with no time zone information. For example,

2021-04-21T11:30:16Z is valid, 2021-04-21T11:30:16-07:00 is invalid:

The final message body:

{

 "applicationId":"5782ed70-b703-4f13-bda3-1f5f0f5c678e",

 "messageSource":"telemetry",

 "deviceId":"sample-device-01",

 "schema":"default@v1",

 "templateId":"urn:modelDefinition:mkuyqxzgea:e14m1ukpn",

 "enqueuedTime":"2021-01-29T16:45:39.143Z",

 "telemetry":{

 "temperature":8.341033560421833

 },

 "messageProperties":{

 "iothub-creation-time-utc":"2021-01-29T16:45:39.021Z"

 },

 "enrichments":{}

}

(Source : https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-messages-construct)

Sending IoT hub messages

Send one-way notifications to a device app from the solution back

end, send cloud-to-device messages from the IoT hub to the device.

Please note, this feature is only in standard tier of IoT hub as

mentioned earlier.

Send cloud-to-device messages through a service-facing endpoint,

“/messages/devicebound”. A device then receives the messages

through a device-specific endpoint,

“/devices/{deviceId}/messages/devicebound”.

To target each cloud-to-device message at a single device, the IoT

hub sets the to property

“/devices/{deviceId}/messages/devicebound”

Let’s receive messages via Iot hub using python

1. Open CMD and install Azure IoT Hub Device SDK for Python:

“pip install azure-iot-device”

2. create a file named SimulatedDevice.py add the following

import statement:

“import time

from azure.iot.device import IoTHubDeviceClient

RECEIVED_MESSAGES = 0”

3. Define the following function to print received message:

“def message_handler(message):

 global RECEIVED_MESSAGES

 RECEIVED_MESSAGES += 1

 print("")

 print("Message received:")

 # print data from both system and application (custom)

properties

 for property in vars(message).items():

 print (" {}".format(property))

 print("Total calls received:

{}".format(RECEIVED_MESSAGES))”

4. Write this code to initialise the client and wait to receive C2D

message:

“def main():

 print ("Starting the Python IoT Hub C2D Messaging device

sample...")

 # Instantiate the client

 client =

IoTHubDeviceClient.create_from_connection_string(CONNE

CTION_STRING)

 print ("Waiting for C2D messages, press Ctrl-C to exit")

 try:

 # Attach the handler to the client

 client.on_message_received = message_handler

 while True:

 time.sleep(1000)

 except KeyboardInterrupt:

 print("IoT Hub C2D Messaging device sample stopped")

 finally:

 # Graceful exit

 print("Shutting down IoT Hub Client")

 client.shutdown()”

5. Add the following main function and save and close

“SimulatedDevice.py”:

“if __name__ == '__main__':

 main()”

Let’s send messages via Iot hub using python

1. Open CMD and create a file named

SendCloudToDeviceMessage.py and add the following import

statement at the start:

“import random

import sys

from azure.iot.hub import IoTHubRegistryManager

MESSAGE_COUNT = 2

AVG_WIND_SPEED = 10.0

MSG_TXT = "{\"service client sent a message\": %.2f}"”

2. Add the following code to send messages:

“def iothub_messaging_sample_run():

 try:

 # Create IoTHubRegistryManager

 registry_manager =

IoTHubRegistryManager(CONNECTION_STRING)

 for i in range(0, MESSAGE_COUNT):

 print ('Sending message: {0}'.format(i))

 data = MSG_TXT % (AVG_WIND_SPEED +

(random.random() * 4 + 2))

 props={}

 # optional: assign system properties

 props.update(messageId = "message_%d" % i)

 props.update(correlationId = "correlation_%d" % i)

 props.update(contentType = "application/json")

 # optional: assign application properties

 prop_text = "PropMsg_%d" % i

 props.update(testProperty = prop_text)

 registry_manager.send_c2d_message(DEVICE_ID,

data, properties=props)

 try:

 # Try Python 2.xx first

 raw_input("Press Enter to continue...\n")

 except:

 pass

 # Use Python 3.xx in the case of exception

 input("Press Enter to continue...\n")

 except Exception as ex:

 print ("Unexpected error {0}" % ex)

 return

 except KeyboardInterrupt:

 print ("IoT Hub C2D Messaging service sample

stopped")”

3. Add the following “main.py” file:

“if __name__ == '__main__':

 print ("Starting the Python IoT Hub C2D Messaging

service sample...")

 iothub_messaging_sample_run()”

Now we are ready to run the application!!

 In CMD write : “python SimulatedDevice.py”

 Open a new CMD and run this command : “python

SendCloudToDeviceMessage.py”

 The final output should be:

Hence we successfully learned how to create, read, and send a C2D

and D2C messaging using Microsoft Azure IoT Hub.

Challenges in implementing the solution

Microsoft Azure has newly launched this IoT hub and learning to use

this has been an uneven journey. Since it is connected with cloud and

can be written in any programming language it becomes a relief to

many new users. If someone has a good knowledge of cloud and IoT

they are good to go with the newest IoT hub era.

Business benefit

Automation is the new trend and is one of the most important factor

in business. This IoT hub will make life a lot easier than thought and

things will escalate faster than expected. Since cloud has more

security, data security is ensured.

References

 https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-

python-python-c2d

 https://learn.microsoft.com/en-

us/azure/architecture/reference-architectures/iot

Catch up with me on LinkedIn

https://www.linkedin.com/in/ishita-biswas-521b191ba/

This blog is written by

~Ishita Biswas

https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-python-python-c2d
https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-python-python-c2d
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/iot
https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/iot
https://www.linkedin.com/in/ishita-biswas-521b191ba/

