
My TODO List website using Azure Cosmos DB

for MongoDB

Introduction to Cosmos DB:

 Azure Cosmos DB for MongoDB makes it easy to use Azure Cosmos DB as if it were a

MongoDB database. Here we can use our existing MongoDB skills and continue to use

our favorite MongoDB drivers, SDKs, and tools by pointing our application to the

connection string for our account using the API for MongoDB.

Hierarchy of resources in Cosmos DB:

In order to interact with these resources there are three different Mongo DB classes:

 Mongo Client is the class that provides a client-side logical representation for the

API for MongoDB layer on Azure Cosmos DB.

 DB is the class that is reference to a database that may, or may not exist in the

server yet.

 The collection is validated server-side when we attempt to work with it.

Cosmos DB account Creation:

Step1 : Open Azure Cosmos DB. Click on “Try Azure Cosmos DB for free” .You will be

directed to the page where you can create your account and launch a quick start.

 Step 2: You can start your first trail to create the new Collections.

Step 3: Open the Data Explorer pane. Select “New Container”. Indicate whether you are

creating a new database or using an existing one. Enter a container ID.

Connecting the project with Cosmos DB:

 In order to connect Cosmos DB with your project follow the below steps:

 Open your backend part of your project.

 Install the MongoDB driver into your project. For example, if you are using

Node.js, you can install the driver by running the following command in your

terminal: npm install mongoose.

 Import the MongoDB libraries into your project. The exact steps for doing

this will depend on your programming language and development

environment. For example, if you are using Node.js, you can import the

MongoDB driver by adding the following line to your code: const

mongoose= require(‘mongoose').

 To create a new collection in Cosmos DB for your project, you can follow these

steps:

 To create a new collection in Cosmos DB for your project, you can follow

these steps:

 Open Azure Cosmos DB.

 Create a new Azure Cosmos DB account or select an existing one.

 Open the Data Explorer pane.

 Select “New Container”.

 Indicate whether you are creating a new database or using an existing one.

 Enter a container ID.

 To get the URL of a database in Cosmos DB, you can follow these steps:

 Open the Data Explorer pane.

 Select the database you want to get the URL for.

 Click on the “Overview” tab.

 The URL of the database will be displayed in the “URI” field and copy it.

 Open the .env file in your backend project. Locate the line where you want to paste

the URL.

 Replace username and password with your details.

 This helps us to connect Cosmos DB with the project to access the database

Moving towards Todo list Project:

A To-do list is a collection of tasks designed for day-to-day organization. This project is

built using ReactJS and NodeJS, with Azure Cosmos DB serving as the MongoDB database.

 ReactJS is employed for the complete front-end implementation, providing the

user interface, while NodeJS adds the necessary backend functionality.

 The project encompasses various processes, including adding new tasks, retrieving

existing data, updating task details, and deleting tasks from the database.

 API commands are utilized to interact with the Cosmos DB database, facilitating

seamless communication between the application and the data store.

 For retrieving data from a Cosmos DB collection, the project utilizes the GET

method. The syntax for the get() method is exemplified as follows:

 To insert new data into a Cosmos DB database, you can use the POST method. The

syntax for the post() method is as follows:

 To update or modify existing data in a Cosmos DB collection, you can use the PUT

Method The syntax for the put() method is as follows:

 To delete documents from a Cosmos DB collection, you can use the DELETE

Method. The syntax for the delete() method is as follows:

Glimpses of TODO list Project:

Figure 1:Front page of Todo list Website

Figure 2:Added items to the Todo list

Figure 3:Deleting the items in the List

Figure 4:Data has been removed from the Database

Figure 5:Updating the items in the List

Figure 6:Updated items in the database

This Project code can be accessed from the link below:

 GitHub Repo Link

To clone the repository, please follow these steps:

1. Open the GitHub repository link provided.

2. Click on the green "Code" button located on the right side of the page.

3. Copy the URL of the repository.

4. Open your terminal or Git Bash.

5. Navigate to the directory where you want to store the cloned repository.

6. Type the following command and press Enter:

git clone https://github.com/AishwaryaReddy7547/TODO-List.git

Make sure Git is installed on your machine before executing the above command. If Git is

not installed, you can download and install it from the official Git website: Git Downloads.

https://github.com/AishwaryaReddy7547/TODO-List.git
https://github.com/AishwaryaReddy7547/TODO-List.git
https://git-scm.com/downloads

